Activation of NAD(P)H:quinone oxidoreductase ameliorates spontaneous hypertension in an animal model via modulation of eNOS activity.

نویسندگان

  • Yong-Hoon Kim
  • Jung Hwan Hwang
  • Jung-Ran Noh
  • Gil-Tae Gang
  • Do Hyung Kim
  • Hwa-Young Son
  • Tae Hwan Kwak
  • Minho Shong
  • In-Kyu Lee
  • Chul-Ho Lee
چکیده

AIMS Hypertension is one of the most common human diseases worldwide, and extensive research efforts are focused upon the identification and utilizing of novel therapeutic drug targets. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) is an important regulator of blood pressure (BP). β-Lapachone (βL), a well-known substrate of NAD(P)H:quinone oxidoreductase (NQO1), increases the cellular NAD(+)/NADH ratio via the activation of NQO1. In this study, we evaluated whether βL-induced activation of NQO1 modulates BP in an animal model of hypertension. METHODS AND RESULTS Spontaneously hypertensive rats (SHR), primary human aortic endothelial cells (HAEC), and endothelial cell lines were used to investigate the hypotensive effect of βL and its mode of action. βL treatment stimulated endothelium-dependent vascular relaxation in response to acetylcholine in aorta of SHR and dramatically lowered BP in SHR, but the hypotensive effect was completely blocked by eNOS inhibition with ω-nitro-l-arginine methyl ester. Aortic eNOS phosphorylation and eNOS protein expression were significantly increased in βL-treated SHR. In vitro studies revealed that βL treatment elevated the intracellular NAD(+)/NADH ratio and concentration of free Ca(2+) ([Ca(2+)]i), and resulted in Akt/AMP-activated protein kinase/eNOS activation. These effects were abolished by NQO1 siRNA and [Ca(2+)]i inhibition through a ryanodine receptor blockade. CONCLUSION This study is the first to demonstrate that NQO1 activation has a hypotensive effect mediated by eNOS activation via cellular NAD(+)/NADH ratio modulation in an animal model. These results provide strong evidence suggesting NQO1 might be a new therapeutic target for hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NQO1 activation regulates angiotensin-converting enzyme shedding in spontaneously hypertensive rats.

AIMS Angiotensin-converting enzyme (ACE) plays a key role in blood pressure (BP) homeostasis via regulation of angiotensin II. Active ACE ectodomain is enzymatically cleaved and released into body fluids, including plasma, and elevated plasma ACE levels are associated with increased BP. β-lapachone (βL) has been shown to increase cellular NAD(+)/NADH ratio via activation of NAD(P)H:quinone oxid...

متن کامل

Cytotoxicity Metabolic Activation of Mitomycin C and Bone Marrow Role of NAD(P)H:Quinone Oxidoreductase 1 in In vivo

NAD(P)H:quinone oxidoreductase 1 / (NQO1 / ), NQO1 along with NRH:quinone oxidoreductase 2 / (NQO2 / ), and wild-type (WT) mice were exposed to five once weekly doses of mitomycin C. The mice were euthanized 15 weeks after the first dose. Blood cell counts and histologic analyses were done. WT and NQO2 / mice showed hypocellularity and a significant increase in adipocytes in bone marrow. They a...

متن کامل

NRH:quinone oxidoreductase 2 and NAD(P)H:quinone oxidoreductase 1 protect tumor suppressor p53 against 20s proteasomal degradation leading to stabilization and activation of p53.

Tumor suppressor p53 is either lost or mutated in several types of cancer. MDM2 interaction with p53 results in ubiquitination and 26S proteasomal degradation of p53. Chronic DNA damage leads to inactivation of MDM2, stabilization of p53, and apoptotic cell death. Here, we present a novel MDM2/ubiquitination-independent mechanism of stabilization and transient activation of p53. The present stu...

متن کامل

Evaluation of the risk of lung cancer associated with NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism in male current cigarette smokers from the Eastern India

NAD(P)H: quinone oxidoreductase 1 (NQO1) is an endogenous cellular defence mechanism against several carcinogenic quinones derived from cigarette smoke. NQO1 C609T polymorphism is a strong determinant of NQO1 structure and function. The people with mutant allele for this polymorphism has significantly reduced NQO1 activity. In this study, we tried to evaluate the risk of lung cancer as...

متن کامل

Modulation of the toxicity and macromolecular binding of benzene metabolites by NAD(P)H:Quinone oxidoreductase in transfected HL-60 cells.

Benzene is oxidized in the liver to produce a series of hydroxylated metabolites, including hydroquinone and 1,2,4-benzenetriol. These metabolites are activated to toxic and genotoxic species in the bone marrow via oxidation by myeloperoxidase (MPO). NAD(P)H:quinone oxidoreductase (NQO1) is an enzyme capable of reducing the oxidized quinone metabolites and thereby potentially reducing their tox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 91 3  شماره 

صفحات  -

تاریخ انتشار 2011